Fortran 90 source codes for Monte Carlo simulations of one- and two-dimensional random walks on naked and nucleosomal DNA

Martin Kampmann

```
PROGRAM eff1no
! records number of different positions visited as a function of steps in
! a one-dimensional random walk on naked DNA.
!
! Run = Run number (1-10)
! Nsteps = number of random walk steps (0-10000)
!}x=x\mathrm{ coordinate of protein position on DNA
!
! Random = random number used to determine direction of next step
! Distribution = array containing the frequencies
!
IMPLICIT NONE
INTEGER :: Run, Nsteps, x, j
REAL :: Random, Mean, Sd
INTEGER, DIMENSION(20001) :: Distribution, Count
REAL, DIMENSION(10):: Results
OPEN (UNIT = 12, FILE = "reff1no.txt", STATUS = "NEW")
WRITE (12, *) "# Steps","Mean","SD"
CALL RANDOM_SEED
DO Nsteps = 0, 10000,100
    Results =0
    ! simulation
    DO Run = 1, 10
```

$\mathrm{x}=0$
Distribution $=0$
DO $\mathrm{j}=1$, Nsteps

CALL RANDOM_NUMBER (Random)
IF (Random < 0.5) THEN

$$
\mathrm{x}=\mathrm{x}+1
$$

ELSE
$\mathrm{x}=\mathrm{x}-1$
END IF
Distribution $(10001+\mathrm{x})=$ Distribution $(10001+\mathrm{x})+1$

END DO

Count $=0$
WHERE (Distribution >0) Count $=1$
Results (Run) = SUM (Count)

PRINT *, Results(Run)

END DO
! write results to file

Mean $=$ SUM(Results)/ 10
Results $=($ Results - Mean $)$
Results $=$ Results*Results
Sd = SQRT(SUM(Results)/10)
WRITE (12, *) Nsteps, ACHAR(9), Mean, ACHAR(9), Sd
PRINT *, Nsteps, Mean, Sd

END DO

END PROGRAM eff1no

PROGRAM eff1nu

$!$ records number of different positions visited as a function of steps in
! a one-dimensional random walk. Nucleosome obstacles are 145 bp in length,
! with 55 bp of linker DNA in between.
!
! Run = Run number (1-10)
! Nsteps = number of random walk steps (0-10000)
$!\mathrm{x}=\mathrm{x}$ coordinate of protein position on DNA
!
! Random = random number used to determine direction of next step
! Distribution = array containing the frequencies
!

IMPLICIT NONE
INTEGER :: Run, Nsteps, x, j
REAL :: Random, Mean, Sd
INTEGER, DIMENSION(20001) :: Distribution, Count
REAL, DIMENSION(10):: Results
OPEN (UNIT $=12$, FILE $=$ "reff1nu.txt", STATUS $=$ "NEW")
WRITE (12, *) "\# Steps","Mean","SD"

CALL RANDOM_SEED

DO Nsteps $=0,10000,100$

Results $=0$
! simulation

DO Run $=1,10$
$\mathrm{x}=0$

Distribution $=0$

DO $\mathrm{j}=1$, Nsteps
CALL RANDOM_NUMBER (Random)
IF ((Random < 0.5) .AND. (MODULO((ABS(x+1)-28),200) > 144)) THEN

$$
\mathrm{x}=\mathrm{x}+1
$$

ELSE IF ((Random >= 0.5) .AND. (MODULO((ABS(x-1)-28),200) > 144)) THEN $\mathrm{x}=\mathrm{x}-1$
END IF

Distribution $(10001+x)=$ Distribution $(10001+x)+1$

END DO

Count $=0$
WHERE (Distribution > 0) Count $=1$
Results (Run) = SUM (Count)

PRINT *, Results(Run)

END DO
! write results to file
Mean $=$ SUM(Results) $/ 10$
Results $=($ Results - Mean $)$
Results $=$ Results*Results
Sd = SQRT(SUM(Results)/10)

WRITE (12, *) Nsteps, ACHAR(9), Mean, ACHAR(9), Sd
PRINT *, Nsteps, Mean, Sd

END DO

END PROGRAM eff1nu

PROGRAM eff2no

$!$ records number of different positions visited as a function of steps in ! a two-dimensional random walk on naked DNA.
!
! Run = Run number (1-10)
! Nsteps = number of random walk steps (0-10000)
$!x=x$ coordinate of protein position on DNA
$!y=y$ coordinate of protein position on DNA
! Random = random number used to determine direction of next step
! Distribution = array containing the frequencies
!

IMPLICIT NONE
INTEGER :: Run, Nsteps, x, y, j
REAL :: Random, Mean, Sd
INTEGER, DIMENSION(20001) :: Distribution, Count
REAL, DIMENSION(10):: Results
OPEN (UNIT $=12$, FILE $=$ "reff2no.txt", STATUS $=$ "NEW")
WRITE (12, *) "\# Steps","Mean","SD"

CALL RANDOM_SEED

DO Nsteps $=0,10000,100$

```
Results = 0
! simulation
DO Run = 1, 10
    x =0
    y = 0
    Distribution = 0
    DO j=1,Nsteps
```

```
DO
            CALL RANDOM_NUMBER (Random)
            IF (Random < 0.25) THEN
\[
x=x+1
\]
\[
y=y+1
\]
ELSE IF (Random >= 0.25 .AND. Random < 0.5) THEN
            x = x+1
            y=y-1
            ELSE IF (Random >= 0.5 .AND. Random < 0.75) THEN
            x=x-1
            y=y+1
ELSE
            x = x - 1
            y=y-1
            END IF
            x = MODULO(x,10)
            IF (x == MODULO(y,10)) EXIT
END DO
Distribution(10001+y) = Distribution(10001+y) + 1
WHERE (Distribution >0) Count \(=1\)
Results (Run) = SUM (Count)
```

END DO
Count $=0$

PRINT *, Results(Run)

END DO
! write results to file

Mean $=\operatorname{SUM}($ Results $) / 10$
Results $=($ Results - Mean $)$
Results $=$ Results*Results
$\mathrm{Sd}=\operatorname{SQRT}(\operatorname{SUM}($ Results $) / 10)$
WRITE (12, *) Nsteps, ACHAR(9), Mean, ACHAR(9), Sd
PRINT *, Nsteps, Mean, Sd

END DO

END PROGRAM eff2no

PROGRAM eff2nu

$!$ records number of different positions visited as a function of steps in
! a two-dimensional random walk. Nucleosome obstacles are 145 bp in length,
! with 55 bp of linker DNA in between. They occlude 50% of the DNA helix.
!
! Run = Run number (1-10)
! Nsteps = number of random walk steps (0-10000)
$!x=x$ coordinate of protein position on DNA
$!y=y$ coordinate of protein position on DNA
! Random = random number used to determine direction of next step
Distribution = array containing the frequencies
!

IMPLICIT NONE

INTEGER :: Run, Nsteps, x, y, j
REAL :: Random, Mean, Sd
INTEGER, DIMENSION(20001) :: Distribution, Count
REAL, DIMENSION(10):: Results
OPEN (UNIT = 12, FILE = "reff2nu.txt", STATUS = "NEW")
WRITE (12, *) "\# Steps","Mean","SD"

CALL RANDOM_SEED

DO Nsteps $=0,10000,100$

Results $=0$
! simulation
DO Run $=1,10$
$\mathrm{x}=0$
$y=0$
Distribution $=0$
DO $\mathrm{j}=1$, Nsteps
DO
CALL RANDOM_NUMBER (Random)
IF (Random<0.25 .AND. (MODULO((ABS $(\mathrm{y}+1)-28), 200)>144$.OR. MODULO $((\mathrm{x}+1), 10)<6))$ THEN

$$
\begin{aligned}
& x=x+1 \\
& y=y+1
\end{aligned}
$$

ELSE IF (Random>=0.25 .AND. Random<0.5 .AND. (MODULO((ABS $(\mathrm{y}-1)-28), 200)>144$.OR. MODULO $((\mathrm{x}+1), 10)<6))$ THEN $\mathrm{x}=\mathrm{x}+1$ $y=y-1$
ELSE IF (Random>=0.5 .AND. Random<0.75 .AND. (MODULO((ABS $(\mathrm{y}+1)-28), 200)>144$.OR. MODULO $((\mathrm{x}-1), 10)<6))$ THEN $\mathrm{x}=\mathrm{x}-1$ $y=y+1$
ELSE IF (MODULO((ABS(y-1)-28),200)>144 .OR. MODULO((x-1),10)<6) THEN
$\mathrm{x}=\mathrm{x}-1$
$y=y-1$
END IF
$\mathrm{x}=\operatorname{MODULO}(\mathrm{x}, 10)$
IF (x == MODULO(y,10)) EXIT
END DO
Distribution $(10001+\mathrm{y})=\operatorname{Distribution}(10001+\mathrm{y})+1$
END DO

Count $=0$
WHERE (Distribution >0) Count $=1$
Results (Run) = SUM (Count)

END DO

! write results to file

Mean $=\operatorname{SUM}($ Results $) / 10$
Results $=$ (Results - Mean $)$
Results $=$ Results*Results
Sd = SQRT(SUM(Results)/10)

WRITE (12, *) Nsteps, ACHAR(9), Mean, ACHAR(9), Sd PRINT *, Nsteps, Mean, Sd

END DO

END PROGRAM eff2nu

